Ir al contenido principal

GEOMETRÍA HIPERBÓLICA PRIMERA PARTE

La mayoría estudiamos en el colegio geometría, llamada EUCLIDIANA, pero no es la única geometría existente, hay otras, entre ellas está LA GEOMETRÍA HIPERBÓLICA. con base en una extensión de CABRI II PLUS, he representado algunos elementos geométricos básicos en esta geometría: RECTAS, SEGMENTOS, TRIÁNGULOS, CUADRILÁTEROS Y PENTÁGONOS REGULARES.


Las anteriores representaciones adquieren sentido si asumimos que vivimos en una superficie esférica, donde por supuesto los elementos arriba mencionados cambian de la forma tradicional en que los conocemos.

Ahora una Parábola Hiperbólica:


Para la construcción, el programa pide: Directríz (arco), Foco (punto) y Círculo de referencia (Círculo de Poincaré)

Además el software da la ecuación:

 
Como se puede observar por la extensión de la ecuación hubo necesidad de recortarla.

ELIPSE HIPERBÓLICA



Nuevamente, Cabri permite graficar elipses, aquí se incluye el círculo referencial, las elipses y sus ecuaciones. !Maravilloso!

HIPÉRBOLA HIPERBÓLICA



La hipérbola hiperbólica se grafica con base en los focos F1, F2, un punto de la curva P y el círculo de Poincare.

H CIRCLE - CÍRCULO HIPERBÓLICO


En la gráfica se observan dos H-círculos, la diferencia con los círculos euclidianos serían los radios: Se observa claramente que la longitud euclidiana de los radios en una circunferencia no es igual.

Por ahora suficiente. Ya ampliaré el tema.

Hasta pronto...



Comentarios

Entradas populares de este blog

Cómo ganarse el BALOTO, matemáticamente?

Hoy hablaré de juegos, en particular uno de moda: el BALOTO.

El BALOTO, se juega apostando a 6 números, desde el 1 al 45.

la probabilidad, rama de las matemáticas, tiene el algoritmo para determinar la posibilidad de ganar, el cual consiste simplemente en dividir el NÚMERO DE CASOS FAVORABLES, entre el NÚMERO DE CASOS POSIBLES.

Un caso típico es el lanzamiento de una moneda: La posibilidad de que caiga CARAS, es 1/2, es decir,

1 caso favorable / 2 casos posibles = 1/2 = 0,5


Examinemos el BALOTO:

Se deben escoger 6 números, entonces:

- Para el primer número hay 45 opciones de elegir un número.

- Para el segundo número, hay 44 opciones de escogencia, porque no pueden repetirse.

- Para el tercer número, hay 43 opciones.

- Para el cuarto, hay 42 opciones.

- Para el quinto, hay 41 opciones.

- Para el sexto 40 opciones.

Para conocer el número total de opciones se aplica el PRINCIPIO GENERAL DEL CONTEO: Se multiplican las opciones por cada número, es decir:

45*44*43*42*41*40 = 5.864´443200

Por lo tanto la …

CORPORIZACIÓN DE 2 ELEVADO A LA PI

CORPORIZACIÓN DE 2 ELEVADO A LA PI




Dicen que una imagen vale más que mil palabras. 
Muchos conceptos matemáticos se vuelven más accesibles en la medida que los podemos visualizar, como es el caso de los números reales.
Con mis estudiantes reflexionábamos sobre el número real:

El valor de éste número en Derive, es el siguiente:

Y problema resuelto!...
Pues no!
Si bien el anterior es el resultado, necesitamos reflexionar sobre el mismo, por ejemplo cómo se calcula, como graficarlo, etc...
El número 2 elevado a la PI, se puede interpretar como el límite de una sucesión de números que se obtienen al elevar el número 2 a las diferentes aproximaciones de PI, como se observa en la siguiente tabla de EXCEL:

Hemos generado así una representación alterna de 2 elevado a la PI: Una representación semiótica numérica.
Algo interesante aquí, es que cada potencia se interpreta como una raíz:

es decir, 2 a la PI, se aproxima a la raíz décima de 2 elevado a la 31.
Así se calculan las demás aproximaciones.
Aprovecha…

NAVIDAD Y SIMETRÍA

SIMETRÍA CON GEOMETRÍA DINÁMICA
En GOOGLE+, en la sección TICS EN LA EDUCACIÓN, se plantea la siguiente actividad:





Naturalmente es un ejercicio sencillo, pero es susceptible de abordar desde diferentes frentes:
- A lápiz y papel
- En un software de graficación básico
- En un software de Geometría Dinámica, por ejemplo CABRI II PLUS!. Dentro de este programa se puede desarrollar la actividad desde diferentes niveles de dificultad y aplicando diferentes estrategias, veamos:
a) Nivel intuitivo: Insertando la figura en Cabri y con las herramientas básicas de polígono, segmento, rellenar color se puede resolver la actividad:

b) Construir en Cabri la porción original del árbol, aplicar el concepto de simetría central o axial.
Aquí se utilizó rectas perpendiculares y circunferencias, elementos que garantizan la simetría.






En las tres gráficas últimas se ve el proceso de construcción, el cual recurre a diferentes conceptos geométricos básicos pero fundamentales en la construcción de la idea de simetría…